Casparian strips in needles are more solute permeable than endodermal transport barriers in roots of Pinus bungeana.

نویسندگان

  • Xiaoqin Wu
  • Jinxing Lin
  • Qingqing Lin
  • Jian Wang
  • Lukas Schreiber
چکیده

The structure and development of endodermal Casparian strips in Pinus bungeana needles and roots were studied by scanning electron microscopy and fluorescence microscopy. Primary pit fields (PFs) frequently occurred in radial walls of Casparian strips isolated from needles, whereas PFs were never detected in Casparian strips from roots. Formation of Casparian strips in needles as well as roots started at the outer parts of the radial walls and they finally occupied the entire radial walls of the endodermis. Fourier transform infrared (FTIR) spectroscopy of Casparian strips isolated from roots revealed significant absorption bands characteristic for suberin. However, in Casparian strips of needles, evidence for suberin was rarely detected by FTIR spectroscopy. The apoplastic permeability of Casparian strips in needles and roots was probed by the apoplastic tracers calcofluor and berberine. Casparian strips in roots efficiently blocked the apoplastic transport (AT) of calcofluor and berberine. Casparian strips in needles blocked the AT of calcofluor, but diffusion of berberine was not inhibited and berberine thiocyanate crystals were detectable in the vascular tissue of the needles. From the data presented, it must be concluded that Casparian strips in needles, which are characterized by the absence of suberin, are more solute permeable compared with Casparian strips in roots.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of LOTR1 in Nutrient Transport through Organization of Spatial Distribution of Root Endodermal Barriers

The formation of Casparian strips and suberin lamellae at the endodermis limits the free diffusion of nutrients and harmful substances via the apoplastic space between the soil solution and the stele in roots [1-3]. Casparian strips are ring-like lignin polymers deposited in the middle of anticlinal cell walls between endodermal cells and fill the gap between them [4-6]. Suberin lamellae are gl...

متن کامل

The composite water and solute transport of barley (Hordeum vulgare) roots: effect of suberized barriers

Background and Aims Roots have complex anatomical structures, and certain localized cell layers develop suberized apoplastic barriers. The size and tightness of these barriers depend on the growth conditions and on the age of the root. Such complex anatomical structures result in a composite water and solute transport in roots. Methods Development of apoplastic barriers along barley seminal r...

متن کامل

A Comprehensive Biophysical Model of Ion and Water Transport in Plant Roots. I. Clarifying the Roles of Endodermal Barriers in the Salt Stress Response

In this paper, we present a detailed and comprehensive mathematical model of active and passive ion and water transport in plant roots. Two key features are the explicit consideration of the separate, but interconnected, apoplastic, and symplastic transport pathways for ions and water, and the inclusion of both active and passive ion transport mechanisms. The model is used to investigate the re...

متن کامل

The MYB36 transcription factor orchestrates Casparian strip formation.

The endodermis in roots acts as a selectivity filter for nutrient and water transport essential for growth and development. This selectivity is enabled by the formation of lignin-based Casparian strips. Casparian strip formation is initiated by the localization of the Casparian strip domain proteins (CASPs) in the plasma membrane, at the site where the Casparian strip will form. Localized CASPs...

متن کامل

ABCG transporters are required for suberin and pollen wall extracellular barriers in Arabidopsis.

Effective regulation of water balance in plants requires localized extracellular barriers that control water and solute movement. We describe a clade of five Arabidopsis thaliana ABCG half-transporters that are required for synthesis of an effective suberin barrier in roots and seed coats (ABCG2, ABCG6, and ABCG20) and for synthesis of an intact pollen wall (ABCG1 and ABCG16). Seed coats of abc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 46 11  شماره 

صفحات  -

تاریخ انتشار 2005